Translating Videos to Commands for Robotic Manipulation with Deep Recurrent Neural Networks
نویسندگان
چکیده
We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks (CNN). Two RNN layers with an encoderdecoder architecture are then used to encode the visual features and sequentially generate the output words as the command. We demonstrate that the translation accuracy can be improved by allowing a smooth transaction between two RNN layers and using the state-of-the-art feature extractor. The experimental results on our new challenging dataset show that our approach outperforms recent methods by a fair margin. Furthermore, we combine the proposed translation module with the vision and planning system to let a robot perform various manipulation tasks. Finally, we demonstrate the effectiveness of our framework on a full-size humanoid robot WALK-MAN.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملLearning Lexical Entries for Robotic Commands using Crowdsourcing
Robotic commands in natural language usually contain lots of spatial descriptions which are semantically similar but syntactically different. Mapping such syntactic variants into semantic concepts that can be understood by robots is challenging due to the high flexibility of natural language expressions. To tackle this problem, we collect robotic commands for navigation and manipulation tasks u...
متن کاملAutoencoder with recurrent neural networks for video forgery detection
Video forgery detection is becoming an important issue in recent years, because modern editing software provide powerful and easy-to-use tools to manipulate videos. In this paper we propose to perform detection by means of deep learning, with an architecture based on autoencoders and recurrent neural networks. A training phase on a few pristine frames allows the autoencoder to learn an intrinsi...
متن کاملClassifying sport videos with deep neural networks
This project aims to apply deep neural networks to classify video clips in applications used to streamline advertisements on the web. The system focuses on sport clips but can be expanded into other advertisement fields with lower accuracy and longer training times as a consequence. The main task was to find the neural network model best suited for classifying videos. To achieve this the field ...
متن کاملTracking of Humans in Video Stream Using LSTM Recurrent Neural Network
In this master thesis, the problem of tracking humans in video streams by using Deep Learning is examined. We use spatially supervised recurrent convolutional neural networks for visual human tracking. In this method, the recurrent convolutional network uses both the history of locations and the visual features from the deep neural networks. This method is used for tracking, based on the detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.00290 شماره
صفحات -
تاریخ انتشار 2017